Interstitial Lung Damage Due to Cocaine Abuse: Pathogenesis, Pharmacogenomics and Therapy

M. Drent1,*, P. Wijnen2 and A. Bast3

1Faculty of Health, Medicine and Life Science, University Maastricht & Dept. of Interstitial Lung Diseases & Respiratory Medicine, Hospital Gelderse Vallei, Ede; 2Dept. of Clinical Chemistry, Maastricht University Medical Centre (MUMC); 3Dept. of Toxicology, University Maastricht, Maastricht, The Netherlands

Abstract: Medicinal agents, beside occupational and environmental agents, remain one of the most common causes for interstitial lung diseases (ILD). A major problem with ILD is the recognition of the causative agent. In some cases more or less characteristic features of presentation are described. Often, the connection between drug-use and the development of related inflammatory damage or idiiosyncratic toxicities is hard to recognize and objectify. Cocaine, a xenobiotic and the most commonly used illicit drug, causes serious medical and social problems. An increasing incidence of lung toxicity related to cocaine or crack-use is being reported worldwide. However, the mechanism of the resulting lung injury is not fully understood. This review summarizes possible molecular mechanisms explaining intra-individual variability in cocaine response and lung toxicity. The importance of including pharmacogenomics in the work-up of patients with suspected drug-induced lung toxicity is highlighted.

Keywords: Cocaine, crack, CYP450, drug-induced toxicity, interstitial lung diseases, polymorphisms, oxidative stress, redox cycling, nitro-ide radicals, cocaine metabolites, biotransformation.

INTRODUCTION

Interstitial lung diseases (ILD) are a rapidly growing and increasingly complex component of clinical practice. They represent a group of heterogeneous disorders that diffusively involve the lung parenchyma. The term ‘interstitial’ was originally applied to these disorders because they are associated with thickening of the alveolar septum. The ‘interstitium’ is that part of the alveolar structures bounded by the alveolar epithelial and endothelial basement membranes. The normal alveolar interstitium is composed of connective tissue components (e.g. collagen, elastic fibers, mesenchymal cells), and inflammatory and immune effector cells (monocytes/macrophages and lymphocytes). Generally, ILD involve alveolar epithelial and endothelial cells as well. In addition, although these diseases primarily attack the alveolar structures (inflammation and fibrosis), many also involve airways, arteries, and veins [1, 2]. ILD can lead to diffuse remodelling and architectural damage to normal lung tissue and progressive loss of lung function. Well over 100 different types of ILD have been identified on the basis of clinical presentation, causes, radiographic findings, and histopathologic examination [3-5].

Drug-induced interstitial lung damage or disease (DI-ILD) is the most common form of drug-induced respiratory disease. The drugs involved not only include prescribed and over-the-counter drugs, but also illicit drugs, herbs, alcohol, and dietary ingredients, see also Table 1 [6-9]. An ever increasing number of drugs can produce or reproduce variegated patterns of naturally-occurring infiltrative lung disease [6, 8, 10]. Although, only in a limited number of cases drugs unequivocally have been identified as cause, it is important to acknowledge the potential role of medication in the development of drug-induced ILD [6, 11]. This is due to the severity of the potentially irreversible damage to the lungs and the improvement that is often easily achieved by stopping administration of drugs. The diagnosis of DI-ILD and other toxic effects of drug use primarily rests on the temporal association of exposure to drug(s), and the development of respiratory symptoms [6]. It is also challenging to identify those cases that are at risk of developing such a reaction and avoiding re-challenge with the trigger.

Cocaine causes medical and social problems. It is the most commonly used illicit drug among patients seen in emergency departments and is the most frequent cause of drug-related deaths reported by medical examiners [12]. Cocaine and marijuana are very popular illicit drugs, acting as stimulants of the central nervous system. Cocaine is a naturally occurring alkaloid that can be extracted from leaves of the Erythroxylon coca plant. It is available in four forms: hydrochloride salt, ‘freebase’, ‘crack’, and ‘bazuco’. Crack cocaine is considered to be the most potent and addictive form of the drug and smoking is the preferred method of intake for many drug users. Adulterants are found in street samples of cocaine and result in additional toxicity. Among the most common adulterants are local anesthetics, sugars, stimulants (e.g. caffeine, ephedrine), toxins (e.g. quinine, strychnine), and inert compounds (e.g. inositol, talc, cornstarch, silica), as well as other substances (e.g. flour, aspirin, plaster) [12]. Crack is a white, crystalline freebase form of cocaine that, unlike the powder form of the drug, may be smoked.

COCAIN-INDUCED INTERSTITIAL LUNG DAMAGE

Besides heart rhythm disturbances, acute and chronic parenchymal lung injuries are not uncommon complications resulting from inhalation of these drugs in habitual drug users [12]. Pulmonary complications of cocaine are influenced by the method of administration, the dose, and the presence of associated substances. The mechanism of the resulting lung injury is not fully understood, but a direct toxic effect of the inhaled agent, occurring in a dose-dependent pattern, is most highly suspected [12].

A wide variety of pulmonary complications associated with the inhalation of (crack) cocaine have been described, including interstitial pneumonitis and fibrosis, pulmonary hypertension, diffuse alveolar hemorrhage (DAH), diffuse alveolar damage (DAD), asthma exacerbation, barotrauma, and thermal airway injury.

The findings of acute noncardiogenic edema, DAH, cryptocogenic organizing pneumonia (COP), and pathologic evidence of acute lung injury in patients who died of acute crack cocaine overdose support the hypothesis that cocaine causes damage to the alveolar-capillary membrane. Additionally, Susskind et al. [13] showed increased lung permeability following long-term use of crack cocaine in seven subjects with the use of labeled technetium-99m-diethylentriamine pentaacetic acid.
Cocaine also appears to have important immunomodulatory capacities. However, the mechanisms underlying cocaine-mediated immune regulation have not yet been fully characterized. One pathway whereby cocaine may influence immune responses is through its action on cytokines, as cytokines are regulated by lymphocytic mechanisms. Drent et al. [14] reported that cocaine down-regulated the production of interferon-gamma (IFN-γ) and IL-8 by human peripheral blood lymphocytes (PBL) through reducing the transcriptional rate of these cytokine genes. These latter findings suggest that the immune modulatory effects of cocaine may be mediated, in part, by decreased production of IFN-γ and IL-8 by PBL. It is well known that IFN-γ plays a central role in several aspects of cell-mediated immune responses, as well as in the pathogenesis of ILD.

Dicpinigaitis et al. [15] described a patient with a clinical presentation strongly suggestive of sarcoidosis with diffuse interstitial pulmonary infiltrates and bilateral hilar adenopathy. Evaluation of lung biopsy showed perivascular and peribronchial histiocytic interstitial infiltrates and the presence of polarizable foreign material in the lung as well as the thoracic lymph node biopsies. Presumably, chronic inhalation of crack cocaine by the reported patient induced a diffuse pulmonary reaction. This response may be a direct effect of cocaine or, alternatively, the lungs may be reacting to one of the many associated substances that may be inhaled along with crack cocaine.

One report of crack cocaine-associated interstitial pneumonitis with eventual respiratory failure demonstrated a histiocytic interstitial infiltrate with polarizable foreign material that was identified as crystalline silica. The similar microscopic appearance of the crystals in this case and the associated fibrotic nodule in the lymph node suggest that silica or a silica-like substance may have been the inciting agent.

Smoking of cocaine exposes the lung directly to the volatilized drug as well as to the other combustion products of the smoked mixture, thereby increasing the risk of adverse pulmonary effects. These complications include acute respiratory symptoms, pulmonary edema, asthma, pulmonary hemorrhage, 'crack lung', talcosis, and ILD [12]. Moreover, chronic inhalative cocaine abuse can cause foreign body associated granulomatosis, mimicking sarcoidosis of the lung and other organs. Different types of interstitial lung damage due to cocaine inhalation – including acute DAH, diffuse alveolar infiltrates, and eosinophilic infiltrates – have been described [16, 17]. Many inhaled chemicals are not hazardous as such but are bio-transformed into reactive intermediates [16].

MOLECULAR MECHANISM OF COCAINE-INDUCED LUNG DAMAGE

The Department of Pulmonary Diseases at the University Hospital of Dijon in France provides a very informative web site which mentions drugs that are suspected to cause lung damage (http://www.pneumotox.com). Considering the list of drugs that may damage the respiratory system it is striking that those compounds which have a high frequency of causing adverse interstitial lung effects are compounds which are known to generate reactive oxygen species. Examples are the cytostatic drug bleomycin, the antibiotic nitrofurantoin or the antiarrythmic agent amiodarone. Interestingly these compounds are oxygen radical generators. Bleomycin and nitrofurantoin produce O2•− via redox cycling (Fig. 1A) [18, 19]. Amiodarone has been shown to produce hydroxyl radicals directly in a water solution [20]. Also the lung toxic herbicide parquat (Fig. 2) generates O2•− via redox cycling [18]. This effective herbicide is prohibited because of its pulmonary toxicity. This led to the suggestion that reactive oxygen species are key players in the etiology of drug-induced lung damage [21]. This is underscored by the observation that stimulators of O2•− generating enzymes such as angiotensin II or endothelin are initiators of pulmonary fibrosis [21]. The question arises whether the lung toxicity of cocaine is also mediated via the formation of reactive oxygen species. This was already extensively hypothesized in 2005, but until now it has not really been experimentally established [22].

Cocaine is hydrolysed rapidly to the inactive benzoyl ecgonine, which is the main metabolite in blood and urine. Other significant metabolites are ecgonine methyl ester and ecgonine. Anhydroecgonine methyl ester, also known as methylleconidine is a pyrolytic substance formed by smoking cocaine. Coca ethylene is also found as a metabolite in persons who consume alcohol [23]. A minor route of metabolism is the formation of N-demethylated cocaine,
norcocaine (Fig. 3). This metabolite is formed by cytochrome P450 (CYP) 3A [24, 25] and is thought to be involved in the hepatotoxicity of cocaine [26].

Fig. (2). The redox cycling of the herbicide paraquat, which leads to the production of superoxide anion radicals.

Interestingly, the mechanism of the hepatotoxicity of cocaine is thought to involve reactive oxygen species in particular $\text{O}_2^•$. Norcocaine is oxidized to N-hydroxynorcocaine which is further oxidized to norcocaine nitroxide [26]. The superoxide anion radical $\text{O}_2^•$ is generated during the reduction of norcocaine nitroxide radical to N-hydroxynorcocaine (Fig. 4). It has been suggested that this redox cycling process between N-hydroxynorcocaine and norcocaine nitroxide may lead to loss of cellular NADPH and to the simultaneous production of H_2O_2 [27]. In this process reduced glutathione (GSH) is consumed which may explain the hepatotoxicity (Fig. 4).

Not only in the liver but also in the central nervous system the role of oxidative stress induced by cocaine has been emphasized and has been related to the action of cocaine [28]. Adverse skin manifestations as observed in heavy cocaine abusers have also been related to enhanced oxidative stress in skin [29]. Cardiovascular dysfunction as a result of cocaine has also been related to oxidative stress [30]. It is conceivable that the lung toxicity may involve a similar process of redox cycling, production of $\text{O}_2^•$ leading to H_2O_2 and subsequent glutathione depletion. This likely mode of toxic action has to our knowledge still not been investigated.

Fig. (3). Biotransformation of cocaine.

HOW DO REACTIVE OXYGEN SPECIES LEAD TO LUNG DAMAGE?

Two decades ago reactive oxygen species were primarily viewed as damaging species. Damage to DNA, protein or lipids can occur as a result of reaction with reactive oxygen species. A simple way to explain lung damage due to, for example, redox cycling. Emphasis currently is more on the physiological regulating role of reactive oxygen species. The $\text{O}_2^•$ is known to react with the vasodilating $\text{NO}^•$ thus preventing its blood pressure lowering effect [31]. The vasoconstrictor effect that results from this interaction between $\text{O}_2^•$ and $\text{NO}^•$, might responsible for the observed cocaine-induced pulmonary hypertension [12]. Pulmonary infarction secondary to severe local vascular spasm and in situ thrombosis may also result from crack cocaine smoking [32].

Recently, it was found that $\text{O}_2^•$ enters the lung fibroblast via chloride channels which then may lead to the generation of transforming growth factor beta (TGF-β) and to the formation of collagen [33]. Redox cycling may thus be critically involved in the etiology of lung fibrosis.

PHARMACOGENOMICS

The following could also be a possible explanation for lung damage by cocaine. Several different xenobiotic-metabolizing CYP and phase II enzymes have been found to be present in the human lung, contributing to in situ activation and inactivation of oxidants [34]. Although metabolism of foreign substances can be beneficial in eliminating potential toxins from the body by rendering the compounds more water soluble, in some instances the metabolic process can transform relatively harmless chemicals into toxic substances through metabolic bio-activation. Therefore, local metabolism
within lung tissue by these CYP enzymes, or the lack of, might explain adverse reactions and subsequent tissue damage [7, 35-38]. Furthermore, inter-individual differences in the expression of the involved CYP enzymes are assumed to contribute to the risk of developing ILD and other diseases initiated by agents that require metabolic activation or detoxification.

In a study by Wijnen et al. [7] it was shown that DI-ILD may be attributable to reduced metabolic capacity of CYP enzymes. The presence of CYP variant genotypes appeared to be a substantial susceptibility risk factor in the development of drug-induced pulmonary adverse events [7]. CYP2C9 and CYP2C19 belong to the largest CYP family and together with other members like CYP2D6 metabolize, to varying amounts, more than half of all frequently prescribed drugs [39]. Also, CYP2C9 and CYP2C19 are both inhibited by cocaine and CYP2C9 has a significant role in the detoxification of many xenobiotics such as cocaine, marijuana and its metabolites [24, 40]. Furthermore, it is known that besides the negative influence of cocaine on CYP2C enzymes, the added substances in laced cocaine can act as antiocoagulants [12, 24]. Moreover, DAH caused by oral antiocoagulants was associated with CYP and/or vitamin K epoxide reductase complex 1 (VKORC1) variant allele presence [41]. DAH with hemoptysis (reported in up to 26% of crack users) secondary to freebase cocaine smoking can be life threatening, with massive bleeding that may require surgery [42]. Smoking of laced (e.g. with rodenticide) cocaine or marijuana can have similar effects [43, 44]. The association of DAH with hypersensitivity pneumonitis has been considered in the pathophysiology of this acute syndrome, which usually responds to corticosteroids. In a case study by Wijnen et al. [45], the presented patients displayed a variant allele for the VKORC1 enzyme, which has a profound influence on the vitamin K cycle and on vitamin K dependent clotting factors. When triggered by (illicit) drugs, an over-anticoagulation and subsequent DAH may occur. Moreover, the influence on the vitamin K cycle was strengthened by the presence of CYP2C allelic variants (making them intermediate metabolizers for marijuana and cocaine or its substitute methadone) in combination with CYP2C inhibition by cocaine use [24, 41]. This also stresses the benefit such patients might gain from prophylactic vitamin K supplementation to prevent adverse effects like bleeding complications, including DAH and DAD, in the future [41, 46, 47].

TREATMENT OPTIONS

Rational treatment of drug-toxicities in cases where the mechanism of toxicity is known is common clinical practice. However, often the connection with drug use and the development of related inflammatory damage or idiosyncratic toxicities is hard to recognize and objectify, especially in those cases using multiple drugs.

There is no special treatment for cocaine-induced ILD as the mechanisms are still not fully understood. The primary role for the clinician is the recognition that cocaine and crack have been associated with pulmonary injury. Most DI-ILDs, including cocaine-induced ILD, are reversible if the usage of the causative drug(s) is discontinued with pulmonary damage and beneficial effect can be observed.

Additional treatment options include corticosteroids, antioxidants, vitamin K, and immunomodulators, such as cyclophosphamide, depending on the severity of the lung damage. For example, inhibitors of CYP3A4 can prevent the hepatotoxicity of cocaine [25]. It would be very interesting to see whether inhibitors of the metabolism of cocaine could also prevent the cocaine-induced lung damage [48]. Moreover, the use of antioxidants like N-acetylcysteine or quercetin or the iron chelator deferoxamine might be worthwhile to investigate [49, 50].

If the damage is already more serious other therapy options have to be considered. For example, hepatotoxicity in rodents can be attenuated by antioxidant treatment and cocaine-induced brain damage in mice can be inhibited by an antioxidant like vitamin E [28, 51]. Similar studies with antioxidants to prevent or improve cocaine-induced lung toxicity have not been done, not even in lab animals. Moreover, studies into prophylactic vitamin K administration have also not yet been conducted and this could be an important investigation, especially useful and eventually beneficial for individuals with VKORC1 polymorphisms.

In general, inflammatory lung disease is treated with corticosteroids. Interestingly enough, lung damage in which an oxidative stress component is involved appears to be less sensitive to corticosteroid treatment due to oxidative damage of histone deacetylase (HDAC) which is important in the action of corticosteroids [52].

CONCLUSIONS

An increasing incidence of lung toxicity related to cocaine or crack is being reported worldwide. There is limited knowledge of the mechanisms of cocaine-induced lung injury including ILD and restricted diagnostic tests are available. The clinician should consider this option in evaluating a patient with unexplained ILD. The diagnosis rests on the clinical picture, history taking and identifying the possible toxic agent. Re-challenge with cocaine is not indicated. The pulmonary long-term effects of cocaine use are diffuse alveolar damage, diffuse alveolar hemorrhage, eosinophilic pneumonia and cryptogenic organizing pneumonia.

It is imperative that clinicians consider cocaine use in their history taking and differential diagnosis when patients presenting with new pulmonary complaints. Discontinuing cocaine use is the best treatment option. Additional treatment options include corticosteroids, antioxidants, vitamin K and immunomodulators, such as cyclophosphamide, depending on the severity of the lung damage. Including pharmacogenomics in the work-up of patients with suspected drug-induced (cocaine) lung toxicity is becoming more and more important.

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENT

Declared none.

REFERENCES

Interstitial Lung Damage Due to Cocaine Abuse

Current Medicinal Chemistry, 2012 Vol. 19, No. 33

GR, Bekers ... deacetylase. Lancet, 2004; 363:731-733.
Received: March 31, 2012 Revised: April 30, 2012 Accepted: April 30, 2012

Kappus H. Oxidative stress in chemical toxicity. Arch Toxicol. 1987; 60:144-149.

Bast A, Weselear AR, Haezen GR, den Hartog GJ. Critical appraisal of the expression of cytochrome P450 enzymes in human lung and evaluation of the possibility that such expression provides evidence of potential stem tunigymmetry in humans. Toxicology, 2008; 254:1-10.

Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet, 2002; 360:1155-1162.

Carlson GP. Critical appraisal of the expression of cytochrome P450 enzymes in human lung and evaluation of the possibility that such expression provides evidence of potential stem tunigymmetry in humans. Toxicology, 2008; 254:1-10.