Neurosarcoidosis: a clinical dilemma

Elske Hoitsma, Carin G Faber, Marjolein Drent, and Om P Sharma

Sarcoidosis is an inflammatory multisystem disorder of unknown cause. Practically no organ is immune to sarcoidosis; most commonly, in up to 90% of patients, it affects the lungs. The nervous system is involved in 5–15% of patients. Neurosarcoidosis is a serious and commonly devastating complication of sarcoidosis. Clinical diagnosis of neurosarcoidosis depends on the finding of neurological disease in multisystem sarcoidosis. As the disease can present in many different ways without biopsy evidence, solitary nervous-system sarcoidosis is difficult to diagnose. Corticosteroids are the drug of first choice. In addition, several cytotoxic drugs, including methotrexate, have been used to treat sarcoidosis. The value of new drugs such as anti-tumour necrosis factor α will be assessed. In this review we describe the clinical manifestations of neurosarcoidosis, diagnostic dilemmas and considerations, and therapy.

Sarcoidosis occurs worldwide, affecting people of all races, both sexes, and all ages; it is the second most common respiratory disease in young adults after asthma. The disease typically affects adults age between 20 years and 40 years. In Scandinavian countries and Japan there is a second peak incidence in women age more than 50 years. Estimates of prevalence range from one to 50 per 100 000 individuals, and this varies among ethnic and racial groups. Sarcoidosis is most common among North Americans of African heritage and north European white people.

Noncaseating epithelioid granulomas are the pathological hallmarks of sarcoidosis and reveal the inflammatory character of the disease. Granulomas are structured masses of activated macrophages and their derivatives (ie, epithelioid and giant cells). Although the cause of sarcoidosis is unknown, there is evidence that sarcoidosis results from exposure of genetically susceptible hosts with increased Th1-immune response to specific environmental factors. The most compelling argument for a genetic mechanism is that there is occasional familial clustering of cases. Environmental factors involved in sarcoidosis can be grouped under infection (such as Mycobacterium tuberculosis and Propionibacterium acnes or P granulosum) and non-infectious environmental exposures (such as pesticides and insecticides, pine pollen, silica or talc, metal dusts, and man-made mineral fibres). Exposure to these factors can cause diseases that are histologically and clinically indistinguishable from sarcoidosis. This

Epidemiology and pathogenesis

Sarcoidosis is an inflammatory multisystem disorder of unknown cause. Practically no organ is immune to sarcoidosis; most commonly, in up to 90% of patients, it affects the lungs. The nervous system is involved in 5–15% of patients. Neurosarcoidosis is a serious and commonly devastating complication of sarcoidosis.

Neurosarcoidosis is rare; most research reports small numbers of patients or case reports and prospective studies of neurosarcoidosis are scarce. Evidence-based recommendations consequently are lacking.

Sarcoidosis occurs worldwide, affecting people of all races, both sexes, and all ages; it is the second most common respiratory disease in young adults after asthma. The disease typically affects adults age between 20 years and 40 years. In Scandinavian countries and Japan there is a second peak incidence in women age more than 50 years. Estimates of prevalence range from one to 50 per 100 000 individuals, and this varies among ethnic and racial groups. Sarcoidosis is most common among North Americans of African heritage and north European white people.

Noncaseating epithelioid granulomas are the pathological hallmarks of sarcoidosis and reveal the inflammatory character of the disease. Granulomas are structured masses of activated macrophages and their derivatives (ie, epithelioid and giant cells). Although the cause of sarcoidosis is unknown, there is evidence that sarcoidosis results from exposure of genetically susceptible hosts with increased Th1-immune response to specific environmental factors. The most compelling argument for a genetic mechanism is that there is occasional familial clustering of cases. Environmental factors involved in sarcoidosis can be grouped under infection (such as Mycobacterium tuberculosis and Propionibacterium acnes or P granulosum) and non-infectious environmental exposures (such as pesticides and insecticides, pine pollen, silica or talc, metal dusts, and man-made mineral fibres). Exposure to these factors can cause diseases that are histologically and clinically indistinguishable from sarcoidosis. This
association supports environmental hypotheses as do reports of community outbreaks, a work-related risk of sarcoidosis for nurses, and an important study tracing case contacts on the Isle of Man. Further evidence is found in the inflammatory response in sarcoidosis, which is characterised by large numbers of activated macrophages and T lymphocytes bearing the CD4-helper phenotype, with a pattern of cytokine production that is most consistent with a Th1-type immune response triggered by an antigen.

Neurological features of sarcoidosis

Cranial neuropathy
Cranial neuropathy seems to be the most common neurological complication of sarcoidosis. Cranial-nerve palsy may be caused by nerve granulomas, increased intracranial pressure or granulomatous basal meningitis. A peripheral seventh nerve palsy (Bell’s palsy) is the most common cranial-nerve lesion, and is in fact the most common neurological manifestation of sarcoidosis overall. Bilateral dysfunction occurs both simultaneously and sequentially.

The optic nerve seems to be the second most commonly affected cranial nerve. Although sarcoid granulomas of the optic nerve are generally unilateral, they may involve both nerves. Sarcoidosis of the optic nerve may occur without systemic involvement. When optic neuropathy occurs, especially in young patients, multiple sclerosis is considered a likely cause. In these cases, chest radiograph with evidence of sarcoidosis makes multiple sclerosis highly unlikely. Optic nerve involvement in sarcoidosis can be divided into a chronic progressive type that responds poorly to corticosteroids and an acute type that responds to prednisone.

Other cranial nerves may be affected as well. Cranial neuropathies may be single or multiple. Heerfordt’s syndrome is a cranial neuropathy (mostly the facial nerve) with uveitis, parotid-gland enlargement, and fever. The syndrome is highly suggestive of sarcoidosis.

Horner syndrome (caused by disruption of the cervical sympathetic nerves as well as pupillary abnormalities, including internal ophthalmoplegia), Argyll-Robertson pupil, and Adie’s pupil have been described in sarcoidosis.

Papilloedema
The diagnosis of neurosarcoidosis should be considered in young adults, particularly women of childbearing age, with rapidly developing papilloedema, especially associated with the seventh or other nerve palsies. In patients with sarcoidosis, fundoscopy should be done; in those with papilloedema, imaging of the brain is indicated.

Aseptic meningitis
Meningeal symptoms may be acute or chronic. Symptoms and signs include fever, headache, neck rigidity, and sterile CSF with pleocytosis (particularly lymphocytes). Concentration of glucose in the CSF may be low in about a fifth of patients. Sometimes mental status changes and polyradiculopathy are present. The basal meninges may be affected, resulting in cranial neuropathy. Chronic meningitis is commonly recurrent and requires long-term therapy, whereas acute meningitis responds favourably to corticosteroids. Cerebral herniation after lumbar puncture in sarcoid meningitis has been described in one patient. Arachnoid villi dysfunction may have contributed to very high intracranial pressures in this patient and lumbar puncture may have caused an acute pressure differential.
Hydrocephalus

Hydrocephalus is rare and may occur because of absorption disturbances12,14,38 or obstruction.39,40 As well as headache and somnolence, hydrocephalus can cause amnesia, dementia, urinary incontinence, and gait disturbances.41,42

Cerebral sarcoïd lesions

Granulomas may remain small or form large intracranial tumours and may be single or multiple. They can occupy extradural, subdural, and parenchymatous locations.43–46 Furthermore, periventricular white-matter lesions are observed. These lesions may resemble those seen in multiple sclerosis or as a result of vascular changes. Asymptomatic periventricular white-matter lesions without meningeal enhancement in patients with sarcoïdosis age over 50 years are most likely not caused by sarcoïdosis and can be thought of as age-related small-vessel disease.

The clinical features of mass lesions are similar to any space occupying intracranial mass. Granulomatous lesions are commonly found in the hypothalamus or pituitary gland.47–51 This may cause endocrine manifestations, such as diabetes insipidus,52 adenopituitary failure,53,54 amenorrhoea-galactorrhoea syndrome,50 isolated or in various combinations. Infratentorial granulomas are less common than supratentorial but cerebellar masses also occur (figure 1).22 When no evidence of systemic sarcoïdosis is found, differential diagnosis of pituitary lesions consists of pituitary adenoma and lymphocytic adenohypophysitis.55 Because some physicians treat lymphocytic hypophysitis empirically based on MRI findings and overall diagnostic assessment, the need for biopsy is not clear.

Granulomatous cerebral angiitis also occurs in sarcoïdosis.14,56 Ophthalmological screening can identify angiitis. Diffuse cerebral vasculopathy may cause psychosis, dementia, and epileptic seizures.38,57–61 Pseudotumour cerebri, caused by dural sinus thrombosis, has also been reported as a presenting symptom of neurosarcoïdosis.62,63

Seizures

Seizure may be the first consequence of neurosarcoïdosis to appear. Any type of seizure may appear. In neurosarcoïdosis seizures indicate chronicity and poor prognosis.64

Psychiatric symptoms

Granulomatous infiltration of the CNS may produce various mental symptoms. In a patient with multisystem sarcoïdosis and unexplained mental deterioration, aggressive assessment of the CNS is indicated. Symptoms may respond to corticoid therapy.38,65 A subset of patients with sarcoïdosis present with mild amnesic problems, without objective deterioration or neurological deficit. This might be related to fatigue. However, further study with neuropsychological testing is needed to explore this hypothesis.
Spinal sarcoidosis

Spinal sarcoidosis encompasses a range of intraspinal diseases, including arachnoiditis, extradural and intradural extramedullary lesions, and intramedullary lesions.\(^1\,\text{65,66}\) Intramedullary spinal involvement is one of the rarest neurological manifestations of the disease (figure 2). Granulomas are commonly clinically and radiologically indistinguishable from a malignant tumour of the spinal cord.\(^31\,\text{64}\) Patients may present with transverse myelopathy with paraparesis or tetraparesis,\(^65\,69–71\) autonomic dysreflexia,\(^72\) radicular syndrome,\(^65\) and cauda equina syndrome.\(^73–78\)

Peripheral neuropathy

Peripheral neuropathy is thought to be rare in sarcoidosis.\(^79,80\) The pattern of large-fibre neuropathy reported in sarcoidosis includes multiple mononeuropathies, polyradiculopathy, Guillain-Barré syndrome, and symmetric distal polyneuropathy, which may be sensorimotor, mostly sensory, or mostly motor.\(^14,86–92\) Epineural and perineural granulomas and granulomatous vasculitis can cause ischaemic axonal degeneration and demyelination owing to local pressure.\(^79,83,84\) Nerve biopsy may be helpful in the diagnosis of problems. In most patients the clinical course of sarcoid neuropathy is subacute\(^83\) and many patients seem to respond to corticosteroid therapy.\(^17\)

Small-fibre neuropathy

Small-fibre neuropathy has been found in sarcoidosis\(^93,94\) and seems to be quite common.\(^14\) However, as standard nerve conduction tests measure only large-nerve fibre function, and because quantitative techniques for the assessment of small nerve fibres are not routinely applied, the diagnosis of small-fibre neuropathy can easily be missed. If the neuropathy is recognised, the symptoms may be enigmas to both patient and doctor. Recognition of small-fibre neuropathy is important as it may cause disabling symptoms. Small-fibre neuropathy may also involve autonomic nerve fibres. Whether life-threatening symptoms, such as cardiac arrhythmias, occur in sarcoidosis when cardiac autonomic denervation is involved needs further study. Small-fibre neuropathy may also cause restless legs syndrome,\(^95\) which, like periodic leg-movement disorder, is associated with, and related to, sleep disturbances. Periodic leg-movement disorder and restless-legs syndrome have been found in patients with sarcoidosis.\(^96\) The pathophysiology and treatment of small-fibre neuropathy in sarcoidosis are unknown and need further study.

Skeletal muscle involvement

Muscle involvement may be symptomatic or asymptomatic.\(^93,94\) Asymptomatic granulomatous muscle

Table 1. Differences between myopathy caused by sarcoidosis and myopathy caused by steroids

<table>
<thead>
<tr>
<th>Feature</th>
<th>Steroid-induced myopathy</th>
<th>Sarcoid myopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical features</td>
<td>Myalgia, proximal weakness, especially legs</td>
<td>Myalgia; weakness: proximal > distal</td>
</tr>
<tr>
<td>CK</td>
<td>Mostly normal</td>
<td>Sometimes palpable nodules, contractures, or cramp</td>
</tr>
<tr>
<td>Frequency</td>
<td>2–21% in all patients receiving steroids</td>
<td>50% of patients have granulomas in their muscles, which are commonly asymptomatic</td>
</tr>
<tr>
<td>EMG</td>
<td>Low-amplitude MUPs of short duration</td>
<td>Fibrillations and positive sharp waves</td>
</tr>
<tr>
<td>Biopsy</td>
<td>Type-2 fibre atrophy</td>
<td>Low-amplitude MUPs of short duration</td>
</tr>
</tbody>
</table>

CK=creatine kinase; EMG=electromyography; MUP=motor unit potential.

Panel 1. Criteria for the diagnosis of neurosarcoidosis

Definite
- Clinical presentation compatible with neurosarcoidosis
- Exclusion of other possible causes
- Positive nervous system histology

Probable
- Clinical presentation compatible with neurosarcoidosis
- Laboratory support of CNS inflammation*
 - Exclusion of other possible causes
 - Evidence of systemic sarcoidosis†

Possible
- Clinical presentation compatible with neurosarcoidosis
- Exclusion of other possible causes

*High concentrations of CSF protein and high numbers of cells, the presence of oligoclonal bands, or MRI evidence compatible with neurosarcoidosis.†Positive histology or at least two indirect indicators from gallium scan, chest imaging, and serum angiotensin-converting-enzyme. Reproduced with permission from Oxford University Press.\(^105\)
involvement in sarcoidosis has been reported with a prevalence of 50–80% whereas symptomatic muscle involvement is much less common (1–4–2–3%). Most patients present with pain, weakness, and tenderness of the involved muscles, and muscle atrophy; some have muscle cramps and contractures. Symptomatic involvement may be divided into the following types: a palpable nodular type, which is seen less frequently; an acute myositis, which is rare and seen more commonly in women; and a chronic myopathic type, which is more common, is slower in onset, and occurs later in life. Because most granulomatous sarcoidosis who present with neurological symptoms, starting therapy (figure 3). However, when treatment fails in the first situation, neurological symptoms are most likely due to the confirmed systemic sarcoidosis and one is justified in tapering. Steroid myopathy is mostly seen in connective tissue, particularly in a perivascular distribution. In sarcoid myopathy lesions take the form of granulomata in muscle fibres is uncommon, electromyography findings can be quite normal. However, electromyography can show myopathic changes. It may be difficult to distinguish myopathy caused by sarcoidosis from that caused by steroids, especially in chronic myopathy. In the first case steroids are indicated, whereas in the second case steroids should be tapered. Steroid myopathy is mostly seen in fluorinated corticosteroids (dexamethasone, triamcinolone, betamethasone; table 1). Muscle biopsy is most helpful here. In sarcoid myopathy lesions take the form of granulomata in connective tissue, particularly in a perivascular distribution. The lesions are quite focal and serial sections increase the chances of establishing diagnosis. In steroid myopathy typically type-2 fibre atrophy is found.

Diagnosis

Nearly every neurological symptom could be caused by neurosarcoidosis. However, as the disease is rare, most physicians have little experience with it. The diagnosis of neurosarcoidosis requires a compatible clinical or radiological picture of sarcoidosis and histological confirmation of noncaseating granulomas. One can distinguish definite, probable, and possible neurosarcoidosis (panel 1). Three different situations of patients presenting with neurological symptoms can be distinguished: a patient with histologically confirmed active systemic sarcoidosis; a patient with a history of sarcoidosis but with no evidence of disease activity; and a patient not known with sarcoidosis. In the first situation, neurological symptoms are most likely due to the confirmed systemic sarcoidosis and one is justified in starting therapy (figure 3). However, when treatment fails in these cases, diagnosis should be reassessed, other causes should be excluded and an attempt should be made to obtain biopsy at the appropriate site. In patients with a history of sarcoidosis who present with neurological symptoms, neurosarcoidosis will rarely be considered at an early stage. Thus, neurosarcoidosis remains one of the more challenging diagnostic problems. The diagnostic approach in the second and third situation should be the same (figure 4). In cases with previous sarcoidosis new evidence of active sarcoidosis should be assessed, other causes need to be excluded, and an effort should be made to obtain biopsy before treatment is started. Whole-body gallium scanning or fluorodeoxyglucose-PET scanning can be used to find other suitable sites for biopsy. The importance of histological verification in patients with previous sarcoidosis will be underlined in case reports 1 and 2.

The important lesson from the case reports is that a history of sarcoidosis does not necessarily mean that any new problem of the patient is automatically attributable to sarcoidosis. In our opinion the approach in such a patient should be the same as in a patient without a history of sarcoidosis (figure 4). While excluding other causes, the differential diagnosis of sarcoidosis should be taken into account (panel 2). If no evidence of systemic sarcoidosis is found but a CNS biopsy reveals a sarcoïd-like granulomatous reaction, one should be aware of the distinction between systemic neurosarcoidosis and a local (neurological) sarcoïd-like reaction, particularly related to an old scar or a helminthic reaction (table 2).

Case report 1

A 55-year-old male with cough and fatigue had pulmonary sarcoidosis. His clinical presentation justified a wait-and-see policy and his symptoms gradually disappeared. After he had been asymptomatic for 8 months, he presented at the neurology department with headaches, dizziness, dysarthria, a painful right leg, and weakness of the right leg. Physical examination revealed L5 radicular syndrome on the right leg, abducens paresis of the left eye, tongue paresis on the left side, and facial paresis on the left side, and dysarthria. No signs of active sarcoidosis were found. Chest radiograph showed no abnormalities and serum-ACE was within normal limits. Gadolinium enhanced MRI showed multifocal leptomeningeal lesions (a focal enhancing lesion intradurally at the level of the fifth root, intracranial enhancing lesions located ventrally of the medulla oblongata on the left side, at the left cerebellopontine angle, and left paraspinal region). As the patient had a history of sarcoidosis and the clinical picture and imaging studies were compatible, he was thought to have neurosarcoidosis. Corticosteroid treatment was started. However, symptoms were progressive despite adequate dosage (1 mg/kg). The patient was referred to our clinic for a second opinion. Biopsy samples of the fifth lumbar root lesion were taken and revealed metastasis of anaplastic seminoma.

Case report 2

A 40-year-old male had hilar adenopathy and pulmonary infiltrate on a routine chest radiograph. Mediastinal-lymph-node biopsy samples showed noncaseating granulomas consistent with the diagnosis of sarcoidosis. He was treated with prednisone for 3 years. He remained asymptomatic for almost 20 years. Then the patient developed multiple neurological symptoms including poor memory, inability to concentrate, tremors, insomnia, loss of balance, transient paraesthesias, and skin sensitivity. However, the patient had no fever, weight loss, anorexia, night sweats, chest pain, dyspnoea or cutaneous lesions. Because of his past history of sarcoidosis, the diagnosis of neurosarcoidosis was suspected. CSF sampling showed normal opening pressure and 26 white blood cells per mm³, mostly lymphocytes. An MRI of the brain revealed multiple foci of abnormal enhancement with associated white-matter oedema in both cerebral hemispheres. There was a large enhancing lesion near the posterior horn of the left lateral ventricle. These lesions were consistent with intraparenchymal neurosarcoidosis. Intravenous methylprednisolone was given and the patient was put on prednisone 90 mg/day. Over the next few days, his condition improved somewhat: he was able to do a few routine activities and his ataxia also improved. His prednisone was then gradually tapered to 40 mg/day. At this point his symptoms reappeared. Methotrexate was added, but the patient continued to deteriorate. Cyclophosphamide was tried without any success. A brain biopsy sample was taken that showed B-cell lymphoma.
Systemic sarcoidosis and its diagnosis
A patient’s clinical presentation may be suggestive of systemic sarcoidosis (eg, the presence of fatigue, weight loss, fever, and the presence of features of sarcoidosis on chest radiography). Intrathoracic involvement is found in up to 90% of patients. Chest radiograph abnormalities can vary from sole bilateral hilar lymphadenopathy to extensive parenchymal disease and fibrosis. In general, chest radiographic appearances have been divided into five stages or types according to the modified Scadding criteria: stage 0, no lung involvement; stage I, bilateral hilar enlargement alone; stage II, hilar enlargement in association with interstitial lung disease; stage III, interstitial lung disease alone; and stage IV, (a more recent addition to the original classification) requires radiographic evidence of lung fibrosis.113

There are no definite diagnostic blood, skin, or radiological imaging tests specific for the disorder. Serum concentrations of angiotensin-converting-enzyme (ACE) have poor predictive value in sarcoidosis.114 Sensitivity of an increase in serum concentrations of ACE in neurosarcoidosis varies from 24% to 76%.103 Serum interleukin-2-receptor (IL2R) is better than the more commonly used ACE for the monitoring of disease activity.114,115 Despite these limitations, serum concentration of ACE is still the only serological marker recommended by the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) in sarcoidosis.18

Analyses of fluid and cells retrieved by bronchoalveolar lavage have improved our understanding of the immunopathogenesis of sarcoidosis, but none of these findings are specific for sarcoidosis, including the CD4/CD8 lymphocyte ratio.19 The Kveim-Silzbach skin test, in which spleen or lymph node homogenate from a patient with sarcoidosis is injected intradermally and later a biopsy sample is taken, is not widely available, not well standardised, and not approved for general use by the Food and Drug Administration.

According to the latest recommendations as published by Baughman and colleagues,116 diagnosis of sarcoidosis can be established by means of the following criteria: (1) the presence of granulomas in biopsy specimen without evidence of tuberculosis, fungus, malignancy, or other causes of granuloma, together with clinical features of sarcoidosis, support the diagnosis; (2) in the absence of biopsy material, clinical features such as bilateral hilar adenopathy on chest radiograph, erythema nodosum, uveitis, and macular papular skin lesions are suggestive of sarcoidosis. If there is no evidence of an alternative diagnosis and additional features highly suggestive of sarcoidosis are present—such as raised concentration of ACE, bronchoalveolar-lavage-fluid lymphocytosis, or lupus pernio—the diagnosis can also be confirmed.116

Neuroimaging
Neuroimaging studies, especially MRI, are the most sensitive diagnostic tools for the detection and localisation of neurological lesions. However, they are not specific as their appearances on radiography are highly variable.117
CSF analysis

CSF abnormalities in neurosarcoidosis are usually non-specific and include mild pleocytosis, high protein content, and, sometimes, slightly low glucose concentrations. Furthermore, increases in the concentration of ACE, IgG-index, oligoclonal bands, CD4/CD8 lymphocyte ratios, and lysozyme and β2-microglobulin concentrations in CSF have been reported. About a third of patients with neurosarcoidosis have normal CSF. Moreover, in disorders such as multiple sclerosis and systemic lupus erythematosus similar CSF abnormalities may be found.

The concentration of ACE in the CSF seems to be high in more than half of the patients with neurosarcoidosis. It must be emphasised, however, that high concentrations are not specific to neurosarcoidosis and have also been reported in CNS infections and malignant tumours.

Several studies found significantly high concentrations of ACE in CSF in patients with active neurosarcoidosis compared with those in controls and patients with sarcoidosis without nervous-system involvement. Furthermore, serial measurements of the concentration of ACE in the CSF change with disease activity. However, neither was there any relation found between serum and CSF concentrations of ACE in patients with neurosarcoidosis, nor was there any relation between serum concentrations and the clinical picture and CSF-total protein or CSF-albumin (increase of albumin concentration in the CSF is an indicator of functioning of the blood–brain barrier). Thus, ACE in the CSF is most probably synthesised in the nervous system and released by sarcoid granulomas in the CNS. In conclusion, determination of ACE concentration in the CSF is not specific for neurosarcoidosis but seems to be especially useful in the monitoring of disease activity and treatment response.

Neurophysiological studies

EEG may detect an early stage of acute encephalomyelitis and epileptic discharges caused by the neurosarcoidosis. Visual evoked potentials, brainstem evoked potentials and trigemino-facial reflexes can be useful in the detection of cranial neuropathy.

Electromyography (EMG) and nerve-conduction studies can show large-fibre neuropathy and myopathy, whereas temperature threshold testing or skin biopsy are needed to assess small-fibre neuropathy. The latter techniques are not yet routinely available. Assessment of autonomic dysfunction, which may be present in small-fibre neuropathy, requires special equipment—such as quantitative sudomotor axon reflex testing. Cardiovascular autonomic function testing with the Ewing tests has a low sensitivity for autonomic dysfunction in small-fibre neuropathy. Testing of the sympathetic skin response is widely available but seems to be neither specific nor sensitive. Polysomnography with EMG monitoring can be helpful in revealing periodic leg-movement disorder and sleep disturbances.

Table 2. Differences between a non-specific local cerebral sarcoid-like granulomatous reaction and multisystem sarcoidosis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Local cerebral sarcoid reaction</th>
<th>Multisystem sarcoidosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ involvement</td>
<td>Commonly only one</td>
<td>Multiple</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Any</td>
<td>20–50</td>
</tr>
<tr>
<td>Chest radiograph</td>
<td>Normal</td>
<td>Abnormal in 90%</td>
</tr>
<tr>
<td>Delayed hypersensitivity</td>
<td>Normal</td>
<td>Depressed</td>
</tr>
<tr>
<td>High serum ACE</td>
<td><5%</td>
<td>>60%</td>
</tr>
<tr>
<td>BAL lymphocytosis</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Slt lamp examination</td>
<td>Normal</td>
<td>Positive 15–20%</td>
</tr>
<tr>
<td>Hypercalcaemia</td>
<td>Absent</td>
<td>Present in 13%</td>
</tr>
<tr>
<td>Gallium body scan</td>
<td>Localised uptake</td>
<td>Multisystem uptake</td>
</tr>
</tbody>
</table>

Therapy

Drug therapy

Given the morbidity and mortality of neurosarcoidosis, most authors recommend early treatment. However, clear guidelines and indications as well as prospective controlled studies are not available in neurosarcoidosis and prospective multicentre studies are needed. As a result, recommendations about treatment are based on experience rather than evidence.

Therapeutic medical options (figure 5) for neurosarcoidosis are similar to that in sarcoidosis at other locations and corticosteroids represent the drugs of first choice. Doses in neurosarcoidosis are higher than those advised for the treatment of other localisations of sarcoidosis, including pulmonary. In general, the initial recommended dose is 40 mg daily, whereas in neurosarcoidosis an initial dose of 1 mg/kg/day is typically recommended. In severe cases high doses of intravenous methylprednisolone may be used for a few days to obtain a high initial loading dose. Some may use bolus pulsed methylprednisolone once a week, eventually along with daily low doses of oral prednisone, or alternate day treatment to avoid the side-effects associated with long-term, high-dose oral treatment. However, at present there is not enough evidence to recommend this. Although corticosteroids suppress inflammation in many patients, symptoms tend to recur in a subset of patients at doses of prednisone less than 10–25 mg/day or the equivalent in other corticoid types, making cessation of corticoids difficult. Furthermore, the incidence of steroid-related side-effects is extremely high with such long treatment.

In patients where corticosteroids may be contraindicated, cytotoxic drugs—such as methotrexate, azathioprine, ciclosporin, and cyclophosphamide—have been used. The choice for one or the other is more a matter of experience than of double-blind studies. On the basis of safety and efficacy, methotrexate and azathioprine may be preferred. Methotrexate has been the most widely reported drug for sarcoidosis and its use for sarcoidosis has been reviewed. It seems to be well tolerated and associated with minimal toxic effects. The major problem is liver
toxicity for which regular blood tests are needed. Response rate of methotrexate in neurosarcoidosis is about 60%, which is similar to that in chronic sarcoidosis. Azathioprine is useful in chronic sarcoidosis, although others have been disappointed in its efficacy in patients with refractory sarcoidosis. Treatment with ciclosporin has also resulted in variable outcomes. About 75% of neurosarcoidosis patients respond to ciclosporin. A short course pulsed regimen seemed to minimise cumulative toxicity. The role of newer immunosuppressive drugs, such as mycophenolate mofetil, is unknown.

Drugs that change the immune system or block cytokine effect, have also been used for the treatment of patients with sarcoidosis. The antimalarial drugs chloroquine and hydroxychloroquine are useful in the treatment of some patients with neurological sarcoidosis. Tumour necrosis factor is released at high concentrations in sarcoidosis.

Table 3. Treatment of neurosarcoidosis

<table>
<thead>
<tr>
<th>Medication</th>
<th>Starting dose</th>
<th>Side-effects*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>1 mg/kg/day, oral</td>
<td>Osteoporosis, cushing syndrome, hypertension, diabetes mellitus, ulcer pepticum, pseudotumour cerebri, glaucoma, cataract, euphoria, psychosis</td>
<td></td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>1000 mg/day for 3 days, intravenous</td>
<td>Very rare</td>
<td></td>
</tr>
<tr>
<td>Cytotoxic drugs†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>10–25 mg/once weekly, oral or subcutaneous</td>
<td>Anaemia, neutropenia, hepatic dysfunction, pneumonitis</td>
<td>Should be combined with folic acid (1 mg/day orally)</td>
</tr>
<tr>
<td>Ciclosporin</td>
<td>5 mg/kg/day, divided in two oral doses</td>
<td>Renal insufficiency, hypertension</td>
<td>Expensive</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>50 mg three times daily, oral</td>
<td>Anaemia, neutropenia, hepatic dysfunction</td>
<td>Cheap</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>50–200 mg daily, oral</td>
<td>Cystitis, neutropenia</td>
<td>Monthly urinalysis to monitor for microscopic haematuria</td>
</tr>
<tr>
<td>500 mg once every 2–3 weeks, intravenous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunomodulators†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>200 mg/day, oral</td>
<td>Retinopathy, ototoxic, myopathy, cardiomyopathy, neuropathy, neuropsychiatric</td>
<td>Routine eye examinations every 3–6 months</td>
</tr>
<tr>
<td>Infliximab</td>
<td>3 mg/kg once in week 1, week 3, and week 5, then once every 6 weeks, intravenous</td>
<td>Fever, headache, dizziness, flushes, nausea, abdominal pain, dyspepsia, fatigue, myalgia, arthralgia, polyneuropathy</td>
<td>Tuberculosis screening is indicated before treatment is started. Contraindicated in patients with heart failure. Should be combined with methotrexate</td>
</tr>
</tbody>
</table>

*All can cause infection because of immunosuppression; †these drugs are generally used as adjuncts to low dose steroids, or as steroid sparing agents when long-term treatment is necessary. In refractory patients, these drugs may be used in combination with high-dose steroids.
concentrations by alveolar macrophages from patients with active sarcoidosis and the concentrations go down with corticosteroid or methotrexate therapy.130 These observations have led to studies of substances that suppress tumour-necrosis-factor release or block its effect on the cell. Immunomodulators known to suppress the release of tumour necrosis factor are thalidomide and infliximab. Infliximab has been shown effective in few cases with refractory sarcoidosis. In refractory neurosarcoidosis it may also be effective.142 The toxicity of treatment for up to 1 year is low. However, the effect of long-term treatment is still unknown.139 An important complication associated with infliximab has been the increased rate of tuberculosis.142 Side-effects and experience with certain drugs may play a part in drug choice (table 3).

Radiation
There are several reports on radiation therapy in neurosarcoidosis.143–146 Although evidenced based recommendations cannot be provided, radiation therapy may be given in patients who do not respond to drug therapy.

Neurosurgical treatment
Neurosurgical resection of intracranial and spinal granulomas may be indicated in life-threatening situations or when medical treatment is insufficient. However, extramedullary spinal lesions may be amenable to surgical resection with postoperative steroid therapy.147 Hydrocephalus typically needs ventriculoperitoneal shunting.

Conclusions
Neurosarcoidosis is a rare disease with many presentations. Although sporadic reports of small numbers of patients with neurosarcoidosis are published, little progress has been made in defining this condition in detail. Therefore, most clinicians are not confident in its diagnosis or treatment. There is a need for a multinational prospective study in order to develop diagnostic and therapeutic standards to bring this severe illness under control.

Role of the funding source
No funding source had a role in the preparation of this paper or the decision to submit it for publication.

References

Search strategy and selection criteria
References for this review were identified by searches of MEDLINE, Current Contents, and the references in relevant articles between 1969 and January 2004. Search terms included “neurosarcoidosis”, “neurological problems in sarcoidosis”, “sarcoidosis and neurology”. Only papers published in English were reviewed. The final reference list was generated based on originality and relevance to the topics covered in the review.

38. Guzz M, Iodov M, Rosenbaum D. Neurosarcoidosis...
Neurosarcoidosis: a clinical dilemma

presenting as a tumour of the basal ganglia and featuring sequential MRI. Neurol Res 1993; 15: 93–96.

60 Dejpal J. Sleep deprivation and leptomeningeal malignancy. Sarcoidosis 1993; 10: 165–75.

71 For personal use. Only reproduce with permission The Lancet Publishing Group.
Neurosarcoidosis: a clinical dilemma

